Units of Measurement Practice Test
 Drawing Congruent Shapes
 Subtraction Fact Word Problems
 Lines, Line Segments, and Rays
Properties of Multiplication: Associative
 Geometry Basics: Perimeter
 Isosceles Triangles
How Much Time Has Gone By?
 Decimal Subtraction
 Writing Out Numbers
Measurement Mania #4: Aquarium Fun
 Adding Fractions
 Practice Reading Lengths
 Find the Figure
Math-Go-Round: Division (Medium)
 Find the Missing Factors
 Logic Puzzle Fun #1
Division: Finding the Quotient!
 Fill the Grid: Square Numbers
 Addition Word Problems: Add It Up!
Place Value Practice: Thousandths
 Identifying Hexagons
 Identifying Octagons
Geometry: Name That Angle!
Units of Measurement: Inches, Feet and Yards
 Types of Angles
 Crazy Coconut Fractions
Geometry: Counting Volume
 Find the Perimeter
 How Much Change?
Division Word Problems: Divide 'Em Up!
 Rounding: Round 'Em Up!
 Snail Division
Multiplication Color by Number: Butterfly 4
 Math-Go-Round: Expert
Coral Reef: Three-Digit Addition with Regrouping
Multiplication Color by Number: Parrot 5
 Multiplying by Seven
 Multiplying by Nine
 Two-Digit Multiplication
Fill in the circle next to the correct answer.

1. The line above measures
 - a) 1 in.
 - b) 4 cm.
 - c) 3 cm.
 - d) 1 \(\frac{1}{2}\) in.

2. 1 lb. of feathers equals
 - a) 10 oz.
 - b) 16 oz.
 - c) 16 g.
 - d) 10 g.

3. 14 pints equals
 - a) 7 quarts
 - b) 26 cups
 - c) 7 gallons
 - d) 6 quarts

4. 1 liquid oz. equals about
 - a) 3 ml.
 - b) 60 ml.
 - c) 30 ml.
 - d) 1 liter

5. A liter equals a little more than
 - a) 1 cup
 - b) 2 cups
 - c) 4 pints
 - d) 1 quart

6. 5 Tons equals
 - a) 1,000 lbs.
 - b) 10,000 lbs.
 - c) 4,000 kg.
 - d) 10,000 kg.

7. How many days are in May and June together?
 - a) 60
 - b) 59
 - c) 62
 - d) 61

8. How many days are in two non-leap years?
 - a) 730
 - b) 732
 - c) 731
 - d) 728

9. How many minutes are in 8 hours?
 - a) 540
 - b) 480
 - c) 560
 - d) 420

10. How many hours are in 1 week?
 - a) 120
 - b) 168
 - c) 144
 - d) 192

11. How many minutes are in 12 hours?
 - a) 720
 - b) 240
 - c) 600
 - d) 480

12. What is the elapsed time between 1:30 p.m. and 3:48 p.m.?
 - a) 2 hours, 28 min.
 - b) 3 hours, 18 min.
 - c) 2 hours, 18 min.
 - d) 3 hours, 28 min.
If two shapes are the same in size and in shape, they are congruent.

If two shapes look the same, but are different in size, they are similar, but not congruent.

Look at the shapes on the left. Follow the directions.

<table>
<thead>
<tr>
<th>Shape 1</th>
<th>Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Draw a congruent shape.</td>
</tr>
<tr>
<td></td>
<td>Draw a similar shape.</td>
</tr>
<tr>
<td></td>
<td>Draw a congruent shape.</td>
</tr>
<tr>
<td></td>
<td>Draw a completely different shape.</td>
</tr>
<tr>
<td></td>
<td>Draw a similar shape.</td>
</tr>
</tbody>
</table>
Write and solve a subtraction equation for each problem.

1. Mrs. Rodriguez bought a nine-pack of chips. Her son Joe and his friends ate four packs. How many are left? $9 - 4 = 5$

2. To make dinner, Mrs. Rodriguez used eight of the twelve potatoes in a bag. How many are left? $12 - 8 = 4$

3. Pork chops were on sale, so Mrs. Rodriguez bought seventeen. She froze nine for another day and cooked the rest. How many pork chops did she cook? $17 - 9 = 8$

4. Mrs. Rodriguez had sixteen apples. She used nine to make a pie. How many apples are left? $16 - 9 = 7$

5. The next morning, Mrs. Rodriguez scrambled seven of her dozen eggs. How many eggs are left? $12 - 7 = 5$

6. Mrs. Rodriguez also toasted six of the thirteen slices of bread in a package. How many slices are left? $13 - 6 = 7$

7. Mrs. Rodriguez cut a pineapple into fifteen pieces. Her family ate six. How many pieces are left? $15 - 6 = 9$

8. A carton of juice held fourteen servings. The Rodriguez family drank five. How many servings are left? $14 - 5 = 9$
Lines, Line Segments, and Rays

A line is a path that extends in two directions with no end.

A line segment is a path that has two fixed end points.

A ray is a path that has one end point and extends infinitely in the other direction.

Look at the pictures below. Label them whether they are lines, line segments, or rays.

It’s Associative!

One of the multiplication properties is **associative**, which means you can group the factors in a multiplication equation and still get the same product.

\[A \times (B \times C) = (A \times B) \times C \]

Find the missing number according to the associative property.

\[
\begin{align*}
4 \times (3 \times 2) &= (4 \times 3) \times \boxed{} \\
6 \times (2 \times 5) &= (6 \times 2) \times \boxed{} \\
(20 \times 5) \times 11 &= 20 \times (11 \times \boxed{}) \\
\end{align*}
\]

Find the product of these numbers.

\[
\begin{align*}
7 \times (2 \times 1) &= \boxed{} \\
2 \times (7 \times 1) &= \boxed{} \\
10 \times (3 \times 4) &= 10 \times \boxed{} = \boxed{} \\
(10 \times 3) \times 4 &= \boxed{} \times 4 = \boxed{} \\
\end{align*}
\]

When you group the factors differently, do the two equations have the same product?
The **perimeter** of a polygon is the distance around it.

Find the perimeter of each figure.

1. Find the perimeter:

 3 in. 5 in. 3 in.
 perimeter = __________

2. Find the perimeter:

 4 cm. 6 cm. 2 cm. 2 cm.
 perimeter = __________

3. Find the perimeter:

 1 yard 2 yards 3 yards
 perimeter = __________

4. Find the perimeter:

 5 mm. 5 mm. 5 mm.
 perimeter = __________

5. Sam’s garden is a perfect square. Each side measures 8 feet. What is the perimeter of his garden? __________

6. Leslie drew a triangle on the board. Each side measured 30 centimeters. What is the perimeter of the triangle? __________

7. What is the perimeter of a hexagon whose sides all equal 4 yards? __________

8. If two sides of a rectangular field are 2 km. wide, and two sides are 4 km. long, what is the perimeter of the field? __________

9. What is the perimeter of a decagon whose sides all equal 8 yards? __________
An isosceles triangle has 2 equal angles and 1 different angle. It also has 2 equal sides and 1 different side. Look at the triangles below. Color the isosceles triangles, then answer the questions.

1. Triangle JKL has 2 65 degree angles and 1 50 degree angle. Is it an isosceles triangle? Circle yes or no.

 [Diagram of Triangle JKL with angles labeled]

 Yes No

2. Triangle CDE below is an isosceles triangle. Find the length of side DE.

 [Diagram of Triangle CDE with sides labeled]

 7 7

 5

 4 4

 4
Elapsed Time

How much time has elapsed, or passed from 1:15 p.m. to 5:28 p.m.?

1:15 to 2:00 = 45 minutes
2:00 to 5:00 = 3 hours or 180 minutes
5:00 to 5:28 = 28 minutes

45
+ 180
+ 28

253

→ 253 minutes = 6 hours, 13 minutes

Find the elapsed time. If the sum is more than 60 minutes, write the time two ways.

1. 7:10 a.m. to 8:15 a.m.
 50
 +15
 65 minutes
 or 1 hour, 5 minutes

2. 9:10 p.m. to 11:01 p.m.

3. 2:40 p.m. to 4:18 p.m.

4. 12:05 a.m. to 1:52 a.m.

5. 6:56 a.m. to 9:44 a.m.

6. 8:36 p.m. to 11:24 p.m.

7. 11:11 a.m. to 12:57 p.m.

8. 5:24 a.m. to 8:19 a.m.

9. 4:08 a.m. to 7:49 a.m.

10. 10:17 p.m. to 1:59 a.m.
Decimal Subtraction

Subtract the decimals. Show your work!

To **subtract decimals**, make sure that the decimal points line up. Subtract the numbers the same way you would in a normal equation. Carry the decimal point directly down into your answer!

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>6.4</td>
<td>4.8</td>
</tr>
<tr>
<td>− 2.4</td>
<td>− 1.3</td>
<td>− 1.9</td>
</tr>
<tr>
<td>3.2</td>
<td>5.1</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.98</td>
<td>6.29</td>
<td>5.82</td>
</tr>
<tr>
<td>− 1.32</td>
<td>− 2.12</td>
<td>− 3.14</td>
</tr>
<tr>
<td>2.66</td>
<td>4.17</td>
<td>2.68</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>3.24</td>
<td>4.43</td>
</tr>
<tr>
<td>− 1.23</td>
<td>− 1.62</td>
<td>− 1.15</td>
</tr>
<tr>
<td>2.87</td>
<td>1.62</td>
<td>3.28</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.65</td>
<td>2.13</td>
<td>5.26</td>
</tr>
<tr>
<td>− 1.15</td>
<td>− 1.09</td>
<td>− 1.02</td>
</tr>
<tr>
<td>6.50</td>
<td>1.04</td>
<td>4.24</td>
</tr>
</tbody>
</table>
Write the number 48,567 using words.

Write the number seventy-five thousand, two hundred and twenty-two.

What is the place value of the digit 3 in the number 526,310?

Write the number that has 2 hundred-thousands, 7 ten-thousands, 7 thousands, 5 hundreds, 3 tens, and 9 ones.

Which digit is in the hundreds place in the number 59,216?

Write the number seventy-five thousand, two hundred and twenty-two.

What is the place value of the digit 4 in the number 34,890?

Write the number four thousand, six hundred and one.

In the number 305,678, which digit is in the hundred-thousands place?
These sea animals live at the aquarium. How much water is needed to fill their tanks? Find the correct water mark, then color it in. See the example below.

Sea turtle
- 70 meters

Octopus
- 120 meters

Starfish
- 85 meters

Seahorse
- 150 meters

Jellyfish
- 1250 meters
Adding Fractions with the same denominator

Write the sum of each fraction below. Remember: when adding fractions with the same denominator, simply add the numerators and keep the denominator the same.

\[
\frac{3}{5} + \frac{1}{5} = \frac{4}{5}
\]

\[
\frac{5}{5} + \frac{8}{5} = \quad \frac{3}{7} + \frac{1}{7} =
\]

\[
\frac{6}{3} + \frac{4}{3} = \quad \frac{7}{4} + \frac{8}{4} =
\]

\[
\frac{11}{9} + \frac{5}{9} = \quad \frac{9}{8} + \frac{9}{8} =
\]

\[
\frac{10}{12} + \frac{12}{12} = \quad \frac{17}{22} + \frac{3}{22} =
\]

\[
\frac{22}{50} + \frac{15}{50} + \frac{17}{50} =
\]

\[
\frac{35}{100} + \frac{6}{100} + \frac{79}{100} + \frac{14}{100} =
\]
Write the correct length in the box.

How long is the snake?

Inch

How long is the necklace?

Inch

How long is the bridge?

Feet

How long is the train?

Feet
Read about each **solid figure**.

Three-dimensional, or 3-D, figures are also called **solid figures**.

- The bottom of a solid figure is called the **base**.
- The sides of a solid figure are called **faces**.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A cube</td>
<td>A solid figure with six equal square faces.</td>
</tr>
<tr>
<td>A rectangular prism</td>
<td>A solid figure with six rectangular faces.</td>
</tr>
<tr>
<td>A sphere</td>
<td>A round solid figure with all points at an equal distance from the center.</td>
</tr>
<tr>
<td>A cone</td>
<td>A solid figure that has a circular base and comes to a point at the top.</td>
</tr>
<tr>
<td>A cylinder</td>
<td>A solid figure with two equal circular bases.</td>
</tr>
</tbody>
</table>

Can you identify **four** solid figures in the drawing?

- []
- []
- []
- []
Math-Go-Round

Find a friend and practice your division skills. Find two coins or game pieces and place them on the square labeled \textbf{START}. Choose one of the problems to solve and move your game piece clockwise around the board to that problem's answer.

Keep track of the number of corners you go around on each move. For each one, give yourself a point. The player with the most points at the end is the winner.

Keep score with the table below.

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
<td></td>
</tr>
<tr>
<td>Round 2</td>
<td></td>
</tr>
<tr>
<td>Round 3</td>
<td></td>
</tr>
<tr>
<td>Round 4</td>
<td></td>
</tr>
<tr>
<td>Round 5</td>
<td></td>
</tr>
<tr>
<td>Round 6</td>
<td></td>
</tr>
<tr>
<td>Round 7</td>
<td></td>
</tr>
<tr>
<td>Round 8</td>
<td></td>
</tr>
<tr>
<td>\textbf{Total}</td>
<td>___ ___</td>
</tr>
</tbody>
</table>

\textbf{Division | Difficulty: ★★☆☆☆}

\text{37} \quad 4\div 96 \quad 5\div 65 \quad 3\div 45 \quad 4\div 68 \\
\text{24} \quad 6\div 48 \quad 5\div 70 \quad 2\div 74 \quad 2\div 56 \\
\text{8} \quad 8\div 80 \quad 4\div 72 \quad 7\div 84 \quad 6\div 96 \\
\text{12} \quad 9\div 81 \quad 2\div 58 \quad 5\div 95 \quad 3\div 78 \\
\text{29} \quad 17 \quad 26 \quad 28
In some math problems, there are missing factors.
To solve these problems, simply use the inverse operation to find the missing factor.
Remember that multiplication and division are inverse operations.

For each problem below, find the missing factor and be sure to show your work.

1) $4 \times \underline{\hspace{2cm}} = 12$
2) $\underline{\hspace{2cm}} \times 3 = 12$
3) $6 \times \underline{\hspace{2cm}} = 42$
4) $7 \times \underline{\hspace{2cm}} = 7$
5) $\underline{\hspace{2cm}} \times 7 = 35$
6) $7 \times \underline{\hspace{2cm}} = 14$
7) $8 \times \underline{\hspace{2cm}} = 56$
8) $\underline{\hspace{2cm}} \times 6 = 30$
9) $\underline{\hspace{2cm}} \times 5 = 35$
10) $2 \times \underline{\hspace{2cm}} = 14$
11) $7 \times \underline{\hspace{2cm}} = 56$
12) $\underline{\hspace{2cm}} \times 5 = 30$

In multiplication, any number multiplied by zero always equals zero. Likewise, when zero is multiplied by any number, the result is always zero.

For each problem below, multiply and write your response on the line provided.

1) $5 \times 0 = \underline{\hspace{2cm}}$
2) $0 \times 4 = \underline{\hspace{2cm}}$
3) $7 \times 0 = \underline{\hspace{2cm}}$
4) $0 \times 6 = \underline{\hspace{2cm}}$
5) $0 \times 0 = \underline{\hspace{2cm}}$
6) $8 \times 0 = \underline{\hspace{2cm}}$
7) $3 \times 0 = \underline{\hspace{2cm}}$
8) $2 \times 0 = \underline{\hspace{2cm}}$
9) $1 \times 0 = \underline{\hspace{2cm}}$
10) $6 \times 0 = \underline{\hspace{2cm}}$
11) $0 \times 5 = \underline{\hspace{2cm}}$
12) $0 \times 2 = \underline{\hspace{2cm}}$
Tony had 10 pancakes. Mary had 2 pancakes more than Tony, and Ashley had 3 more pancakes than Mary. How many pancakes did Ashley have?

Danny bought 5 candies. Lucy bought 2 fewer than Danny. Jimmy bought 4 more than Lucy. How many candies did Jimmy buy?

Sam read 15 books over the summer. Jenny read 4 fewer books than Sam and Rose read 7 more books than Jenny. How many book did Rose read?

May had 20 peanuts. Erika had 10 more peanuts than May. Jacky had 5 fewer peanuts than Erika. How many peanuts did Jacky have?

Mike is 17 years old. Tiffany is 3 years younger than Mike. Roy is 5 years older than Tiffany. How old is Roy?
Finding the Quotient!

Divide to find the quotient.

Division is the process of finding how many times one number will fit into another number. Division is the opposite, or inverse, operation of multiplication.

The number you are dividing is the **dividend**.
The number you are dividing by is the **divisor**.
The answer to a division problem is the **quotient**.

HINT: Use your multiplication facts to help you find the answer.

\[12 \div 2 = 6 \]

\[16 \div 2 = 8 \]

\[12 \div 4 = 3 \]

\[15 \div 3 = 5 \]

\[9 \div 3 = 3 \]

\[10 \div 5 = 2 \]
Fill in the missing boxes.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Add It Up!

Solve each addition word problem. Show your work!

Pipa went strawberry picking with her sister. Pipa picked 56 strawberries. Her sister picked 38. How many strawberries did they pick in all?

Leah has a teddy bear collection with 64 bears. Her aunt gave her 16 more bears to add to her collection. How many bears does Leah have now?

Kira owns 42 different hair bows. Her grandmother gave her 23 more for her birthday. How many hair bows does Kira have now?

John and his father went fishing. John caught 17 fish. His father caught 11. How many fish did they catch in all?

Dan gave his friend Chris 14 star stickers. He also gave his friend Jenna 20 star stickers. How many star stickers did Dan give in all to his friends?

Over the summer, Kenta read 8 mystery books, 10 science fiction books, and 13 horror books. How many books did Kenta read in all over the summer?
Solve each problem.

1. What is the place value of the 5 in the number above?

2. Write the number that has 5 tens, 9 ones, 4 tenths, 5 hundredths, 7 thousandths.

3. What number is in the thousandths place in the number sequence 9.876?

4. Write the number that has 8 tens, 3 ones, 7 hundredths, and four thousandths.

5. Write the decimal number for five and two hundredths.

6. Write the number that has 6 tens, 0 ones, 0 tenths, 0 hundredths and 3 thousandths.

7. Write the decimal number for 9 and one thousandths.

Hexagon: Finding The Way Home

Help Mr. Hexagon find his way home by coloring a path. He can only follow the path with the same shape as his name.
Octagon: Finding The Way Home

Help Mr. Octagon find his way home by coloring a path. He can only follow the path with the same shape as his name.
Name that Angle!

Identify the angles by writing right, acute, or obtuse on the line.

A right angle forms a square corner.

An acute angle is less than a right angle.

An obtuse angle is greater than a right angle.
U.S. Customary Units of Length

1 foot (ft.) = 12 inches (in.) 1 yard (yr.) = 3 feet (ft.) 1 yard (yd.) = 36 inches (in.)

Find the equivalent measurement.

1. 12 in. = _____ ft. 36 in. = _____ yd. 24 in. = _____ ft.
2. 36 in. = _____ ft. 2 yd. = _____ ft. 15 ft. = _____ yd.
3. 4 yd. = _____ ft. 3 yd. = _____ in. 30 ft. = _____ yd.
4. 7 ft. = _____ in. 45 ft. = _____ yd. 12 ft. = _____ in.
5. 4 yd. = _____ in. 20 yd. = _____ ft. 50 yd. = _____ ft.

Solve each problem.

6. Jim is 5.5 feet tall. What is the equivalent in inches? ________________
7. Mike ran 15 yards. What is that distance in feet? ________________
8. Kathy has 5 feet of ribbon.
 How much ribbon does she have in inches? ________________
9. Bridgitte's room is 24 feet wide.
 What is that width in yards? ________________
10. Both Daniel and Chris are 4 feet 6 inches tall.
 What is their combined height in yards? ________________
What’s Your Angle?

Identify each of these angles by writing right, acute, or obtuse on the line below the angle.

Brain Box

When two lines meet at one point they form an angle.

This is angle A. A

Angles can be different sizes. Some are wide and some are narrow.

A right angle forms a square corner.

An acute angle is less than a right angle.

An obtuse angle is greater than a right angle.

Find more worksheets at www.education.com/worksheets.

Reprinted with permission from Brain Quest Third Grade Workbook (Workman, 2008).
Coconut Addition

Add the fractions.

To add fractions that have the same denominator, just add the numerators. The denominator stays the same.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3} + \frac{1}{3})</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>(\frac{4}{8} + \frac{3}{8})</td>
<td>(\frac{7}{8})</td>
</tr>
<tr>
<td>(\frac{2}{4} + \frac{1}{4})</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>(\frac{2}{6} + \frac{2}{6})</td>
<td>(\frac{4}{6})</td>
</tr>
<tr>
<td>(\frac{7}{12} + \frac{3}{12})</td>
<td>(\frac{10}{12})</td>
</tr>
<tr>
<td>(\frac{2}{4} + \frac{1}{4})</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>(\frac{2}{10} + \frac{4}{10})</td>
<td>(\frac{6}{10})</td>
</tr>
<tr>
<td>(\frac{1}{5} + \frac{3}{5})</td>
<td>(\frac{4}{5})</td>
</tr>
<tr>
<td>(\frac{3}{6} + \frac{2}{6})</td>
<td>(\frac{5}{6})</td>
</tr>
<tr>
<td>(\frac{2}{8} + \frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>(\frac{3}{7} + \frac{2}{7})</td>
<td>(\frac{5}{7})</td>
</tr>
<tr>
<td>(\frac{2}{9} + \frac{3}{9})</td>
<td>(\frac{5}{9})</td>
</tr>
</tbody>
</table>
Counting Volume

Find the volume by counting the cubic units. Write down the answer. Note: some squares cannot be seen in a picture, but you know they are there.

1 cubic unit

3 cubic units
Piggy’s House Hunting: Find the Perimeter

Piggy needs to find a house with the largest perimeter. Help Piggy by finding the perimeter of each house. Then color the largest one.

More worksheets at www.education.com/worksheets

Copyright © 2009-2010 by Education.com

More worksheets at www.education.com/worksheets
Subtract the price from the coins you have and write down the change you have left.

You Have:

<table>
<thead>
<tr>
<th>Coin Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cent</td>
<td>32</td>
</tr>
<tr>
<td>5 cents</td>
<td>23</td>
</tr>
<tr>
<td>10 cents</td>
<td>12</td>
</tr>
</tbody>
</table>

You Buy:

- Kite: 32¢
- Balloon: 29¢
- Flower: 43¢

What’s Left:

- Subtract the price from the coins you have and write down the change you have left.
Ms. Bran brought 4 evenly divided boxes of muffins to class. There are 36 muffins altogether. How many muffins are in each box?

Pookie’s Pet Store has 24 tropical fish. They keep 3 fish in each tank. How many fish tanks are there?

Sally divided her 48 spools of thread evenly into 6 boxes. How many spools of thread did she put in each box?

Ivan scooped 16 scoops of ice cream evenly onto 8 cones. How many scoops of ice cream are on each cone?

Chris has 28 cactus plants. He keeps his cactus plants in even rows of 7. How many cactus plants are in each row?

There are 50 toes in the swimming pool. Each person has 10 toes. How many people are in the pool?
Round ‘Em Up!
Round the numbers to the nearest ten.

Rounding to the nearest ten
If the ones number is 5 or greater, round up to the nearest ten. Example: 17 → 20
If the ones number is 4 or less, round down to the nearest ten. Example: 12 → 10

<table>
<thead>
<tr>
<th>Number</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>67</td>
<td>70</td>
</tr>
<tr>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td>86</td>
<td>90</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>52</td>
<td>50</td>
</tr>
</tbody>
</table>

Rounding to the nearest hundred
If the tens number is 5 or greater, round up to the nearest hundred. Example: 161 → 200
If the tens number is 4 or less, round down to the nearest hundred. Example: 118 → 100

<table>
<thead>
<tr>
<th>Number</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>486</td>
<td>500</td>
</tr>
<tr>
<td>266</td>
<td>300</td>
</tr>
<tr>
<td>521</td>
<td>500</td>
</tr>
<tr>
<td>651</td>
<td>700</td>
</tr>
<tr>
<td>824</td>
<td>800</td>
</tr>
<tr>
<td>148</td>
<td>100</td>
</tr>
<tr>
<td>378</td>
<td>400</td>
</tr>
<tr>
<td>234</td>
<td>200</td>
</tr>
<tr>
<td>333</td>
<td>300</td>
</tr>
<tr>
<td>613</td>
<td>600</td>
</tr>
<tr>
<td>883</td>
<td>900</td>
</tr>
<tr>
<td>949</td>
<td>900</td>
</tr>
<tr>
<td>551</td>
<td>600</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>728</td>
<td>700</td>
</tr>
<tr>
<td>762</td>
<td>800</td>
</tr>
</tbody>
</table>

Here’s a little rhyme to help you remember how to round numbers:
5 or more, raise the score
4 or less, let it rest
Snail Division

Find the quotient.

\[
\begin{array}{cccc}
3 \div 9 & 5 \div 15 & 4 \div 4 & 2 \div 14 \\
5 \div 40 & 2 \div 22 & 3 \div 18 & 9 \div 36 \\
3 \div 24 & 7 \div 21 & 2 \div 8 & 8 \div 32 \\
4 \div 16 & 6 \div 36 & 3 \div 30 & 4 \div 12 \\
2 \div 10 & 3 \div 27 & 1 \div 5 & 6 \div 24 \\
\end{array}
\]
Once you have solved the multiplication problems below, you can color in the butterfly using the color that is listed under each answer.

- $6 \times 3 = $____ neon green
- $4 \times 5 = $____ tangerine
- $1 \times 2 = $____ canary yellow
- $9 \times 6 = $____ purple
- $5 \times 7 = $____ hot pink
- $2 \times 9 = $____ neon green
- $9 \times 4 = $____ black
- $8 \times 4 = $____ violet
Math-Go-Round

Multiplication | Difficulty: ★★★★☆

Find a friend and practice your multiplication skills. Find two coins or game pieces and place them on the square labeled START. Choose one of the problems to solve and move your game piece clockwise around the board to that problem’s answer.

Keep track of the number of corners you go around on each move. For each one, give yourself a point. The player with the most points at the end is the winner.

Keep score with the table below.
Coral Reef Addition

Add using regrouping. Show your work!

196
+ 328

564
+ 49

486
+ 235

182
+ 98

559
+ 262

256
+ 84

798
+ 123

654
+ 176

497
+ 155

348
+ 285

846
+ 137
Once you have solved the multiplication problems on the right, you can color in the parrot using the color that is listed under each answer.

- $4 \times 8 = \text{cinnamon}$
- $3 \times 3 = \text{brown}$
- $2 \times 8 = \text{yellow}$
- $6 \times 9 = \text{apricot}$
- $2 \times 3 = \text{cream}$
- $3 \times 6 = \text{brick}$
- $9 \times 3 = \text{lime}$
- $8 \times 2 = \text{yellow}$
Multiplying by Seven

Find the product.

Fill in the multiplication chart.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Multiplying by Nine

Find the product.

$$\begin{array}{cccc}
9 & \times 1 & & \\
& & 3 & \times 9 \\
& & 9 & \times 4 \\
& & 2 & \times 9 \\
9 & \times 5 & & \\
& & 0 & \times 9 \\
& & 1 & \times 9 \\
& & 10 & \times 9 \\
6 & \times 9 & & \\
& & 8 & \times 9 \\
& & 9 & \times 7 \\
& & 5 & \times 9 \\
7 & \times 9 & & \\
& & 4 & \times 9 \\
& & 9 & \times 2 \\
& & 9 & \times 6 \\
\end{array}$$

Fill in the multiplication chart.

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
For each problem below, multiply and regroup if necessary. Be sure to show all of your work.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>63</td>
<td>x</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>14</td>
<td>x</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>24</td>
<td>x</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>12</td>
<td>x</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>18</td>
<td>x</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>10</td>
<td>x</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td>30</td>
<td>x</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td>17</td>
<td>x</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9)</td>
<td>11</td>
<td>x</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10)</td>
<td>15</td>
<td>x</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11)</td>
<td>60</td>
<td>x</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12)</td>
<td>86</td>
<td>x</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13)</td>
<td>12</td>
<td>x</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14)</td>
<td>47</td>
<td>x</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15)</td>
<td>77</td>
<td>x</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16)</td>
<td>29</td>
<td>x</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17)</td>
<td>13</td>
<td>x</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18)</td>
<td>23</td>
<td>x</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19)</td>
<td>42</td>
<td>x</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20)</td>
<td>34</td>
<td>x</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3rd Grade Math Practice Packet

- Units of Measurement Practice Test
- Lines, Line Segments, and Rays
- Properties of Multiplication: Associative
- Isosceles Triangles
- How Much Time Has Gone By?
- Decimal Subtraction
- Measurement Mania #4: Aquarium Fun
- Adding Fractions
- Practice Reading Lengths
- Find the Figure
- Logic Puzzle Fun #1
- Division: Finding the Quotient!
- Addition Word Problems: Add It Up!
- Place Value Practice: Thousandths
- Geometry: Name That Angle!
- Units of Measurement: Inches, Feet and Yards
- Crazy Coconut Fractions
- Geometry: Counting Volume
- Find the Perimeter
- How Much Change?
- Division Word Problems: Divide 'Em Up!
- Rounding: Round 'Em Up!
- Snail Division
- Multiplication Color by Number: Butterfly 4
- Coral Reef: Three-Digit Addition with Regrouping
- Multiplication Color by Number: Parrot 5
- Multiplying by Seven
- Multiplying by Nine
- Two-Digit Multiplication
Fill in the circle next to the correct answer.

1. The line above measures
 - a) 1 in.
 - b) 4 cm.
 - c) 3 cm.
 - d) 1 1/2 in.

2. 1 lb. of feathers equals
 - a) 10 oz.
 - b) 16 oz.
 - c) 16 g.
 - d) 10 g.

3. 14 pints equals
 - a) 7 quarts
 - b) 26 cups
 - c) 7 gallons
 - d) 6 quarts

4. 1 liquid oz. equals about
 - a) 3 ml.
 - b) 60 ml.
 - c) 30 ml.
 - d) 1 liter

5. A liter equals a little more than
 - a) 1 cup
 - b) 2 cups
 - c) 4 pints
 - d) 1 quart

6. 5 Tons equals
 - a) 1,000 lbs.
 - b) 10,000 lbs.
 - c) 4,000 kg.
 - d) 10,000 kg.

7. How many days are in May and June together?
 - a) 60
 - b) 59
 - c) 62
 - d) 61

8. How many days are in two non-leap years?
 - a) 730
 - b) 732
 - c) 731
 - d) 728

9. How many minutes are in 8 hours?
 - a) 540
 - b) 480
 - c) 560
 - d) 420

10. How many hours are in 1 week?
 - a) 120
 - b) 168
 - c) 144
 - d) 192

11. How many minutes are in 12 hours?
 - a) 720
 - b) 240
 - c) 600
 - d) 480

12. What is the elapsed time between 1:30 p.m. and 3:48 p.m.?
 - a) 2 hours, 28 min.
 - b) 3 hours, 18 min.
 - c) 2 hours, 18 min.
 - d) 3 hours, 28 min.
A line is a path that extends in two directions with no end.

A line segment is a path that has two fixed end points.

A ray is a path that has one end point and extends infinitely in the other direction.

Look at the pictures below. Label them whether they are lines, line segments, or rays.

- **Line Segment**
- **Ray**
- **Line**

It’s Associative!

One of the multiplication properties is *associative*, which means you can group the factors in a multiplication equation and still get the same product.

\[A \times (B \times C) = (A \times B) \times C \]

Find the missing number according to the associative property.

\[4 \times (3 \times 2) = (4 \times 3) \times \boxed{2} \]

\[6 \times (2 \times 5) = (6 \times 2) \times \boxed{5} \]

\[(20 \times 5) \times 11 = 20 \times (11 \times \boxed{5}) \]

Find the product of these numbers.

\[7 \times (2 \times 1) = \boxed{14} \]

\[2 \times (7 \times 1) = \boxed{14} \]

\[10 \times (3 \times 4) = 10 \times \boxed{12} = \boxed{120} \]

\[(10 \times 3) \times 4 = \boxed{30} \times 4 = \boxed{120} \]

When you group the factors differently, do the two equations have the same product?

YES
All About Isosceles Triangles

An isosceles triangle has 2 equal angles and 1 different angle. It also has 2 equal sides and 1 different side. Look at the triangles below. Color the isosceles triangles, then answer the questions.

1. Triangle JKL has 2 65 degree angles and 1 50 degree angle. Is it an isosceles triangle? Circle yes or no.

 Yes No

2. Triangle CDE below is an isosceles triangle. Find the length of side DE.

 Since isosceles triangles have two equal sides, the length of side DE is 10.
Elapsed Time

How much has elapsed, or passed from 1:15 p.m. to 5:28 p.m.?

1:15 to 2:00 = 45 minutes
2:00 to 5:00 = 3 hours or 180 minutes
5:00 to 5:28 = 28 minutes

\[45 + 180 + 28 = 253 \quad \text{minutes} = 6 \text{ hours, 13 minutes} \]

Find the elapsed time. If the sum is more than 60 minutes, write the time two ways.

1. 7:10 a.m. to 8:15 a.m.
 \[\begin{align*}
 50 \\
 +15 \\
 \hline
 65 \text{ minutes} \\
 \text{or 1 hour, 5 minutes}
 \end{align*} \]

2. 9:10 p.m. to 11:01 p.m.
 \[\begin{align*}
 50 \\
 60 \\
 +1 \\
 \hline
 111 \text{ minutes} \\
 \text{or 1 hour, 51 minutes}
 \end{align*} \]

3. 2:40 p.m. to 4:18 p.m.
 \[\begin{align*}
 20 \\
 60 \\
 +18 \\
 \hline
 98 \text{ minutes} \\
 \text{or 1 hour, 38 minutes}
 \end{align*} \]

4. 12:05 a.m. to 1:52 a.m.
 \[\begin{align*}
 55 \\
 +52 \\
 \hline
 107 \text{ minutes} \\
 \text{or 1 hour, 47 minutes}
 \end{align*} \]

5. 6:56 a.m. to 9:44 a.m.
 \[\begin{align*}
 4 \\
 120 \\
 +44 \\
 \hline
 168 \text{ minutes} \\
 \text{or 2 hour, 48 minutes}
 \end{align*} \]

6. 8:36 p.m. to 11:24 p.m.
 \[\begin{align*}
 24 \\
 120 \\
 +24 \\
 \hline
 168 \text{ minutes} \\
 \text{or 2 hour, 48 minutes}
 \end{align*} \]

7. 11:11 a.m. to 12:57 p.m.
 \[\begin{align*}
 49 \\
 +57 \\
 \hline
 106 \text{ minutes} \\
 \text{or 1 hour, 46 minutes}
 \end{align*} \]

8. 5:24 a.m. to 8:19 a.m.
 \[\begin{align*}
 36 \\
 120 \\
 +19 \\
 \hline
 175 \text{ minutes} \\
 \text{or 2 hour, 55 minutes}
 \end{align*} \]

9. 4:08 a.m. to 7:49 a.m.
 \[\begin{align*}
 52 \\
 120 \\
 +49 \\
 \hline
 221 \text{ minutes} \\
 \text{or 3 hour, 41 minutes}
 \end{align*} \]

10. 10:17 p.m. to 1:59 a.m.
 \[\begin{align*}
 43 \\
 +120 \\
 +44 \\
 \hline
 222 \text{ minutes} \\
 \text{or 3 hour, 42 minutes}
 \end{align*} \]
Decimal Subtraction

Subtract the decimals. Show your work!

To subtract decimals, make sure that the decimal points line up. Subtract the numbers the same way you would in a normal equation. Carry the decimal point directly down into your answer!

<table>
<thead>
<tr>
<th>5.6</th>
<th>6.4</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 2.4</td>
<td>- 1.3</td>
<td>- 1.9</td>
</tr>
<tr>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>3.2</td>
<td>5.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.98</th>
<th>6.29</th>
<th>5.82</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1.32</td>
<td>- 2.12</td>
<td>- 3.14</td>
</tr>
<tr>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>2.66</td>
<td>4.17</td>
<td>2.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.101</th>
<th>2.12</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>3.24</td>
<td>4.43</td>
</tr>
<tr>
<td>- 1.23</td>
<td>- 1.62</td>
<td>- 1.15</td>
</tr>
<tr>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>2.88</td>
<td>1.62</td>
<td>3.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.65</th>
<th>2.13</th>
<th>5.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1.15</td>
<td>- 1.09</td>
<td>- 1.02</td>
</tr>
<tr>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>6.50</td>
<td>1.04</td>
<td>4.24</td>
</tr>
</tbody>
</table>
These sea animals live at the aquarium. How much water is needed to fill their tanks? Find the correct water mark, then color it in. See the example below.

- **Sea turtle**
 - 70 meters
 - 100 m
 - 50 m
 - 10 m

- **Octopus**
 - 120 meters
 - 200 m
 - 100 m
 - 20 m

- **Starfish**
 - 85 meters
 - 100 m
 - 50 m
 - 10 m

- **Seahorse**
 - 150 meters
 - 200 m
 - 100 m
 - 20 m

- **Jellyfish**
 - 1250 meters
 - 1000 m
 - 100 m
 - 10 m
Adding Fractions with the same denominator

Write the sum of each fraction below. Remember: when adding fractions with the same denominator, simply add the numerators and keep the denominator the same.

\[
\frac{3}{5} + \frac{1}{5} = \frac{4}{5}
\]

\[
\frac{5}{5} + \frac{8}{5} = \frac{13}{5}
\]

\[
\frac{3}{7} + \frac{1}{7} = \frac{4}{7}
\]

\[
\frac{6}{3} + \frac{4}{3} = \frac{10}{3}
\]

\[
\frac{7}{4} + \frac{8}{4} = \frac{15}{4}
\]

\[
\frac{11}{9} + \frac{5}{9} = \frac{16}{9}
\]

\[
\frac{9}{8} + \frac{9}{8} = \frac{18}{8}
\]

\[
\frac{10}{12} + \frac{12}{12} = \frac{22}{12}
\]

\[
\frac{17}{22} + \frac{3}{22} = \frac{20}{22}
\]

\[
\frac{22}{50} + \frac{15}{50} + \frac{17}{50} = \frac{54}{50}
\]

\[
\frac{35}{100} + \frac{6}{100} + \frac{79}{100} + \frac{14}{100} = \frac{134}{100}
\]
How long is the snake?

How long is the necklace?

How long is the bridge?

How long is the train?
Figure This!

Read about each solid figure

Three-dimensional or 3-D, figures are also called solid figures

* The bottom of a solid figure is called the base
* The sides of a solid figure are called faces

A **cube** is a solid figure with six equal square faces.

A **rectangular prism** is a solid figure with six rectangular faces.

A **sphere** is a round solid figure with all points at an equal distance from the center.

A **cone** is a solid figure that has a circular base and comes to a point at the top.

A **cylinder** is a solid figure with two equal circular bases.

Can you identify four solid figures in the drawing?

- rectangular prism
- sphere
- cube
- cylinder
Logic Puzzle Fun! #1

Read the questions below and write down the answers.

Tony had 10 pancakes. Mary had 2 pancakes more than Tony, and Ashley had 3 more pancakes than Mary. How many pancakes did Ashley have?

\[
10 + 2 + 3 = 15
\]
Ashley ate 15 pancakes.

Danny bought 5 candies. Lucy bought 2 fewer than Danny. Jimmy bought 4 more than Lucy. How many candies did Jimmy buy?

\[
5 - 2 + 4 = 7
\]
Jimmy bought 7 candies.

Sam read 15 books over the summer. Jenny read 4 fewer books than Sam and Rose read 7 more books than Jenny. How many book did Rose read?

\[
15 - 4 + 7 = 18
\]
Rose read 18 books over the summer.

May had 20 peanuts. Erika had 10 more peanuts than May. Jacky had 5 fewer peanuts than Erika. How many peanuts did Jacky have?

\[
20 + 10 - 5 = 25
\]
Jacky has 25 peanuts.

Mike is 17 years old. Tiffany is 3 years younger than Mike. Roy is 5 years older than Tiffany. How old is Roy?

\[
17 - 3 + 5 = 19
\]
Roy is 19 years old.
Finding the Quotient!

Divide to find the quotient.

Division is the process of finding how many times one number will fit into another number. Division is the opposite, or inverse, operation of multiplication.

The number you are dividing is the **dividend**.
The number you are dividing by is the **divisor**.
The answer to a division problem is the **quotient**.

HINT: Use your multiplication facts to help you find the answer.

1. **16 ÷ 2 = 8**

 2) 16

 The answer is **8**.

2. **12 ÷ 4 = 3**

 4) 12

 The answer is **3**.

3. **15 ÷ 3 = 5**

 3) 15

 The answer is **5**.

4. **9 ÷ 3 = 3**

 3) 9

 The answer is **3**.

5. **10 ÷ 5 = 2**

 5) 10

 The answer is **2**.
Add It Up!

Solve each **addition word problem**. Show your work!

Pipa went strawberry picking with her sister. Pipa picked 56 strawberries. Her sister picked 38. How many strawberries did they pick in all?

\[56 + 38 = 94\]

They picked 94 strawberries.

Leah has a teddy bear collection with 64 bears. Her aunt gave her 16 more bears to add to her collection. How many bears does Leah have now?

\[64 + 16 = 80\]

Leah has 80 teddy bears.

Kira owns 42 different hair bows. Her grandmother gave her 23 more for her birthday. How many hair bows does Kira have now?

\[42 + 23 = 65\]

Kira owns 65 hair bows.

John and his father went fishing. John caught 17 fish. His father caught 11. How many fish did they catch in all?

\[17 + 11 = 28\]

They caught 28 fish.

Dan gave his friend Chris 14 star stickers. He also gave his friend Jenna 20 star stickers. How many star stickers did Dan give in all to his friends?

\[14 + 20 = 34\]

Dan gave 34 star stickers.

Over the summer, Kenta read 8 mystery books, 10 science fiction books, and 13 horror books. How many books did Kenta read in all over the summer?

\[8 + 10 + 13 = 31\]

Kenta read 31 books.
Thousandths

1. What is the place value of the 5 in the number above? thousandths __________

2. Write the number that has 5 tens, 9 ones, 4 tenths, 5 hundredths 7 thousandths. __________ 59.457 __________

3. What number is in the thousandths place in the number sequence 9.876? __________ 6 __________

4. Write the number that has 8 tens, 3 ones, 7 hundredths, and four thousandths. __________ 83.074 __________

5. Write the decimal number for five and two hundredths. __________ 5.02 __________

6. Write the number that has 6 tens, 0 ones, 0 tenths, 0 hundredths and 3 thousandths. __________ 60.003 __________

7. Write the decimal number for 9 and one thousandths. __________ 9.001 __________
Name that Angle!

Identify the angles by writing right, acute, or obtuse on the line.

A right angle forms a square corner.

An acute angle is less than a right angle.

An obtuse angle is greater than a right angle.

right acute obtuse

obtuse right acute

acute obtuse right

acute obtuse right
U.S. Customary Units of Length

1 foot (ft.) = 12 inches (in.)
1 yard (yr.) = 3 feet (ft.)
1 yard (yd.) = 36 inches (in.)

Find the equivalent measurement.

1. 12 in. = _____ ft.
 36 in. = _____ yd.
 24 in. = _____ ft.

2. 36 in. = _____ ft.
 2 yd. = _____ ft.
 15 ft. = _____ yd.

3. 4 yd. = _____ ft.
 3 yd. = _____ in.
 30 ft. = _____ yd.

4. 7 ft. = _____ in.
 45 ft. = _____ yd.
 12 ft. = _____ in.

5. 4 yd. = _____ in.
 20 yd. = _____ ft.
 50 yd. = _____ ft.

Solve each problem.

6. Jim is 5.5 feet tall. What is the equivalent in inches?
 66

7. Mike ran 15 yards. What is that distance in feet?
 45

8. Kathy has 5 feet of ribbon.
 How much ribbon does she have in inches?
 60

9. Bridgitte’s room is 24 feet wide.
 What is that width in yards?
 8

10. Both Daniel and Chris are 4 feet 6 inches tall.
 What is their combined height in yards?
 3
Coconut Addition

Add the fractions.

To add fractions that have the same denominator, just add the numerators. The denominator stays the same.

<table>
<thead>
<tr>
<th>Fraction 1</th>
<th>Fraction 2</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 + 1/3</td>
<td>4/8 + 3/8</td>
<td>2/3</td>
</tr>
<tr>
<td>2/4 + 1/4</td>
<td>2/6 + 2/6</td>
<td>3/4</td>
</tr>
<tr>
<td>7/12 + 3/12</td>
<td>2/4 + 1/4</td>
<td>10/12</td>
</tr>
<tr>
<td>2/10 + 4/10</td>
<td>1/5 + 3/5</td>
<td>6/10</td>
</tr>
<tr>
<td>3/6 + 2/6</td>
<td>2/8 + 1/8</td>
<td>5/6</td>
</tr>
<tr>
<td>3/7 + 2/7</td>
<td>2/9 + 3/9</td>
<td>5/7</td>
</tr>
</tbody>
</table>
Counting Volume

Find the volume by counting the cubic units. Write down the answer.
Note: some squares cannot be seen in a picture, but you know they are there.

1 cubic unit

3 cubic units

6 cubic units

18 cubic units

7 cubic units

13 cubic units
Piggy’s House Hunting: Find the Perimeter

Piggy needs to find a house with the largest perimeter. Help Piggy by finding the perimeter of each house. Then color the largest one.

1. House with sides 9, 13, 13, 8.5, perimeter $P = 48$
2. House with sides 6, 10, 6, 13, perimeter $P = 52$
3. House with sides 10, 5, 5, perimeter $P = 52$
4. House with sides 8, 8, 8, 16, perimeter $P = 56$
5. House with sides 12, 8, 8, 12, perimeter $P = 72$
6. House with sides 11, 11, 11, 11, perimeter $P = 65$
7. House with sides 5, 15, 9, 10, perimeter $P = 64$
Subtract the price from the coins you have and write down the change you have left.

You Have: You Buy What’s Left

32¢ - 33¢ =

29¢ - 13¢ =

43¢ - 28¢ =
Ms. Bran brought 4 evenly divided boxes of muffins to class. There are 36 muffins altogether. How many muffins are in each box?

\[36 \div 4 = 9 \]
There are 9 muffins in each box.

Pookie’s Pet Store has 24 tropical fish. They keep 3 fish in each tank. How many fish tanks are there?

\[24 \div 3 = 8 \]
There are 8 tropical fish in each tank.

Sally divided her 48 spools of thread evenly into 6 boxes. How many spools of thread did she put in each box?

\[48 \div 6 = 8 \]
There are 8 spools in each box.

Ivan scooped 16 scoops of ice cream evenly onto 8 cones. How many scoops of ice cream are on each cone?

\[16 \div 8 = 2 \]
There are 2 scoops on each cone.

Chris has 28 cactus plants. He keeps his cactus plants in even rows of 7. How many cactus plants are in each row?

\[28 \div 7 = 4 \]
There are 4 cactus plants in each row.

There are 50 toes in the swimming pool. Each person has 10 toes. How many people are in the pool?

\[50 \div 10 = 5 \]
There are 5 people in the pool.
Round ‘Em Up!

Round the numbers to the nearest ten.

Rounding to the nearest ten
If the ones number is 5 or greater, round up to the nearest ten. Example: 17 → 20
If the ones number is 4 or less, round down to the nearest ten. Example: 12 → 10

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>60</td>
<td>31</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>27</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>48</td>
<td>50</td>
<td>61</td>
<td>60</td>
<td>73</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>84</td>
<td>80</td>
<td>24</td>
</tr>
</tbody>
</table>

Rounding to the nearest hundred
If the tens number is 5 or greater, round up to the nearest hundred. Example: 161 → 200
If the tens number is 4 or less, round down to the nearest hundred. Example: 118 → 100

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>486</td>
<td>500</td>
<td>266</td>
<td>300</td>
</tr>
<tr>
<td>824</td>
<td>800</td>
<td>148</td>
<td>100</td>
</tr>
<tr>
<td>333</td>
<td>300</td>
<td>613</td>
<td>600</td>
</tr>
<tr>
<td>551</td>
<td>600</td>
<td>195</td>
<td>200</td>
</tr>
</tbody>
</table>

Example: 20
Example: 12 10

Here’s a little rhyme to help you remember how to round numbers:

5 or more, raise the score
4 or less, let it rest

Copyright 2008-2009 Education.com
Snail Division
Find the quotient.

\[
\begin{array}{cccc}
3)9 & 3)15 & 4)4 & 7)14 \\
\hline
3 & 5 & 4 & 2 \\
\hline
15 & 15 & 4 & 14 \\
\hline
8 & 40 & 6 & 36 \\
\hline
40 & 22 & 18 & 36 \\
\hline
22 & 22 & 18 & 32 \\
\hline
24 & 24 & 18 & 12 \\
\hline
24 & 24 & 18 & 12 \\
\hline
10 & 27 & 5 & 24 \\
\hline
10 & 27 & 5 & 24 \\
\hline
\end{array}
\]
Multiplication Color By Number

Once you have solved the multiplication problems below, you can color in the butterfly using the color that is listed under each answer.

- $6 \times 3 = 18$ (neon green)
- $4 \times 5 = 20$ (tangerine)
- $1 \times 2 = 2$ (canary yellow)
- $9 \times 6 = 54$ (purple)
- $9 \times 4 = 36$ (black)
- $8 \times 4 = 32$ (violet)
- $2 \times 9 = 18$ (neon green)
- $5 \times 7 = 35$ (hot pink)

More worksheets at www.education.com/worksheets
Coral Reef Addition

Add using **regrouping**. Show your work!

<table>
<thead>
<tr>
<th>111</th>
<th>564</th>
<th>486</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>564</td>
<td>486</td>
</tr>
<tr>
<td>+ 328</td>
<td>+ 49</td>
<td>+ 235</td>
</tr>
<tr>
<td>524</td>
<td>613</td>
<td>721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>111</th>
<th>564</th>
<th>486</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td>559</td>
<td>256</td>
</tr>
<tr>
<td>+ 98</td>
<td>+ 262</td>
<td>+ 84</td>
</tr>
<tr>
<td>280</td>
<td>821</td>
<td>340</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>111</th>
<th>564</th>
<th>486</th>
</tr>
</thead>
<tbody>
<tr>
<td>798</td>
<td>654</td>
<td>497</td>
</tr>
<tr>
<td>+ 123</td>
<td>+ 176</td>
<td>+ 155</td>
</tr>
<tr>
<td>921</td>
<td>830</td>
<td>652</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>111</th>
<th>564</th>
<th>486</th>
</tr>
</thead>
<tbody>
<tr>
<td>348</td>
<td>846</td>
<td>983</td>
</tr>
<tr>
<td>+ 285</td>
<td>+ 137</td>
<td></td>
</tr>
<tr>
<td>633</td>
<td></td>
<td>983</td>
</tr>
</tbody>
</table>
Multiplication Color By Number

Once you have solved the multiplication problems on the right, you can color in the parrot using the color that is listed under each answer.

\[4 \times 8 = 32 \]
\[3 \times 3 = 9 \]
\[2 \times 8 = 16 \]
\[6 \times 9 = 54 \]
\[2 \times 3 = 6 \]
\[3 \times 6 = 18 \]
\[9 \times 3 = 27 \]
\[8 \times 2 = 16 \]

- 32: Cinnamon
- 9: Brown
- 16: Yellow
- 54: Apricot
- 6: Cream
- 18: Brick
- 27: Lime
- 16: Yellow
Multiplying by Seven
Find the **product**.

Fill in the multiplication chart.

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>70</td>
</tr>
</tbody>
</table>
Multiplying by Nine

Find the **product**.

Multiplication Chart

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>81</td>
<td>90</td>
</tr>
</tbody>
</table>

Fill in the multiplication chart.
For each problem below, multiply and regroup if necessary. Be sure to show all of your work.

1) $63 \times 2 = 126$
2) $14 \times 5 = 70$
3) $24 \times 3 = 72$
4) $12 \times 3 = 36$
5) $18 \times 4 = 72$
6) $10 \times 6 = 60$
7) $30 \times 2 = 60$
8) $17 \times 4 = 68$
9) $11 \times 7 = 77$
10) $15 \times 4 = 60$
11) $60 \times 8 = 480$
12) $86 \times 2 = 172$
13) $12 \times 1 = 12$
14) $47 \times 3 = 141$
15) $77 \times 3 = 231$
16) $29 \times 8 = 232$
17) $13 \times 3 = 39$
18) $23 \times 4 = 92$
19) $42 \times 5 = 210$
20) $34 \times 3 = 102$